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Foreword on the gambler’s ruin 

Blaise Pascal (1623-1662) 
mathematician & philosopher 

Pierre de Fermat (1605-1665) 
mathematician & magistrate 

“what happens if I have $1000 at hand 
and  I play a fair game (p=0.5 to win 

loose) betting $1 at each trial ?”  

Letter (1656) 

N0=$1000 

$0 
time 

  

Almost sure ruin! 



3 

Outline  

Part 1. Initial motivation:                            
 tilts in Monte Carlo criticality simulations 

 

Part 2. Beyond the Boltzmann critical equation:             
 stochastic modeling of spatial correlations 

 

Part 3. Consequences on eigenvalue calculations:         
 traveling waves & clustering 

 

Part 4. Consequences on experimental reactor physics: 
 measuring spatial correlations at RCF 
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Initial motivation: numerical tilts? 

Power tilt in the Monte-Carlo simulation of large reactor cores: 
 

 Long standing issue (70’s): dedicated publications, expert groups, … 
 Strong under-estimation of error bars develop  

 
=> problem for criticality-safety assessment ! 

[Martin, Physor2012] 
[Lee et al, SNA+MC2010] pin power distribution 

real std dev  

apparent std dev  
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If we look closer ... 

 
Instead of looking at integrated tallies, can we consider instantaneous tallies? 

is the “space-time” flux in a pincell 

L = 100 cm L = 10 cm L = 400 cm 

 
Strong spatial correlations develop for loosely coupled systems 

     
     “neutron clustering” 
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Clustering in mathematics and in biology 

[Young, Nature 2001] 
[Houchmandzadeh, PRE 2008] 
 

q  tools to describe clustering in physics: statistical mechanics, in         
particular Branching Brownian Motion (BBM) 

[Dawson, 1972] 
[Cox and Griffeath, 1985] 

 

q  clustering in theoretical ecology 

      

q  clustering in biology (where it is aka brownian bugs): 

Ø  plankton are any organisms that live in the water column 
and are incapable of swimming against a current  

Ø  they reproduce, die and are transported by the water 
(like neutrons!)     
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Neutron clustering 

x x

x x

y y

yy

z z

z z

t=0 t=100

t=300t=200

q  Exponential flights with  
q  typical jump size  
q  to recover the diffusion regime  

q  Binary branching 

q  Dimension 

q  Typical length 

 

€ 

1/Σs →0

€ 

d = 3

Can we have a quantitative 
insight into this phenomenon? 

€ 

L >> l

q  TRIPOLI-4®   

p(0) =
1

2
p(2) =

1

2
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Branching Brownian motion 

t

x
(t

)

x1

x2

x3

example with d=1 

this process couples:  
⇒  Galton-Watson birth-death process 
     to describe fission and absorption 
⇒  Brownian motion to simulate 
     neutron transport 

simplified model for neutron transport in multiplicative media: 
q                neutrons, uniformly distributed at t=0 
q  infinite medium (           ) 
q  no energy dependence 
q  Brownian motion with diffusion coefficient       [cm2.s-1] 
q  undergoes collision at Poissonian times with rate      [s-1] 
q  at each collision,     descendants with probability 
q  dimension d 

€ 

L→∞
< x

2(t) >= Dt

shuffling 

N0 ! 1 c0 = cte

p(2), p(3), ... $ �f

p(1) $ �s

p(0) $ �c

�1 =
X

k

kp(k)
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Crash course for clustering in dimension 0 
q  We consider a “cell” i at time t with     individuals  
q  d=0  Branching events with: 

Ø  production rate  
Ø  disparition rate  

q  Proba(nèn+1 in dt): 
q  Proba(nèn-1 in dt): 

< n(t) >=
X

n

nP (n, t)

n
l

W+(n)dt = �ndt
W�(n)dt = µndt

�, µ [s�1]

n [#]

dt [s]

Forward master equation 

< n2(t) >=
X

n

n2P (n, t)

dP (n, t)

dt
= W�(n+ 1)P (n+ 1, t)

Critical: 

< n(t) >= n0

�p(2)�p(0),

�p(0)ndt
�p(2)ndt

�p(0) = �p(2)

< V (t) >= �n0t

< n(t) >= n0e
�(p(2)�p(0))t

< V (t) >=< n2(t) > � < n(t) >2= �(p(0) + p(2))n0t

�p(0)
�p(2)

�p(2)
�p(0)

�p(2)�p(0)

W+(n)
W�(n)

�W�(n)P (n, t)W�(n)

+W+(n)P (n, t)�W+(n)W�(n+ 1)

+W+(n� 1)P (n� 1, t)W+(n� 1)
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From gambler’s ruin to critical catastrophy…  

Controlled by                                 
(mean number of part/collision) 

Ultimate fate of this population?                      population grows unbounded 
                     population becomes extinct 
                     population constant on 

          average: critical condition                                          
 

[Williams, 1974] 

Fair game in neutron transport = criticality 
Gambler’s ruin = critical catastrophe! 

N neutrons in a critical spatial cell 
which undergo fission or capture 

events 

N $1 coins in a box which are 
played in a fair game 
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… and from critical catastrophy to neutron clustering 

N0=$1000 

$0 
time 

Almost sure ruin! 

[Houchmandzadeh, PRE 2008] 

< n(t) >= n0

< V (t) >= �n0t
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From d=0 to d=2 

d=0 => Critical castastrophy ó Gambler’s ruin 
d>0 => Neutron clustering 
 
 

  but here the cells where totally decoupled 
   “fake” d=2 

 
 

    We have to take into account the  
     diffusion of neutrons 
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STOCHASTIC MODELING & THEORY 
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STOCHASTIC MODELING & THEORY 

Master equation 
for branching processes 

Solving of the 1st moment 
of that equation  

=> flux 

Solving of the 2d moment 
of that equation  

=> spatial correlations 
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No 1-dimensional nuclear reactor 
All those equations model the neutron transport in fissile medium 

(not only the criticality mode of MC codes) 
 
 

The solution to the 2-points function when 
dimension d = 1 or d = 2  

diverges with time… 
 
 
 
 

  …a purely 1d infinite system systematicaly develops power peaks at arbitrary places! 
 
 
 

The typical amplitude of those peaks is controlled by                                  .                                    
 
 
 

Challenge in MC criticality simulations:             << Less than in reality! 

< ... >=

⌫2
c0

fission process 

different in 
reactor physics 
and MC simu 

c0
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Beyond the Boltzmann equation: 
 Feynman-Kac & Master equations 

Boltzmann 
1844-1906 
 

Ulam 
1909-1984 

Kac 
1914-1984 
 

Feynman 
1918-1988 
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Beyond the Boltzmann equation: 
 Feynman-Kac & Master equations 

q  The Boltzmann critical equation calculates mean quantities 

q  The Feynman-Kac path integral approach (backward 
equations) or Fokker-Planck type equations are equations 
for the probability => mean + variance/correlations + … 

And surprisingly 
variance & correlations 

take the lead over 
mean statistics ! 
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Advanced modeling 

Critical 
fuel rod 

Local clustering Extinction Anarchy 

q  Dimensionality (3d vs. 1d) 

q  Finite-speed effects (transport vs. diffusion) 

q  Vacuum boundary conditions (absorbing BC vs. reflecting BC) 

q  Delayed neutrons (two time scales vs. single time scale) 

q  Population control (N does not depend on time) 

q  Clustering and entropy 

q  Bias modeling 

q  Time => generations 

Control Local clustering Stable fluctuations 

Dumonteil, E. et al, Annals of Nuclear Energy 63,  
612-618 (2014) 

Zoia, A. et al, Physical Review E,  
90, 042118 (2014) 

De Mulatier et al, J. Stat. Mech., 15 , 
  P08021, 1742–5468 (2015) 

Houchmandzadeh et al,  
Phys. Rev. E 92 (5), 052114 (2015) 

Dumonteil et al, Nuc. Eng. Tech.,  
 10.1016/j.net.2017.07.011 (2017) 

Nowak et al, Ann. Nuc. Ener. 94, 856-868 (2015) 

Sutton and Mittal, Nuc. Eng. Tech.,  
 10.1016/j.net.2017.07.008 (2017) 

Credits: A. Zoia 
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Outline  
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 traveling waves & clustering 
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 measuring spatial correlations at RCF 



28 

Consequence 3:  
 
 
 

 under-sampling biases 
  
   & clustering  

 
    & traveling waves 
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q   Poisson statistics  
q   Cosine shape  

q  1-D BBM with population control 
q  Uniform initial distribution 

Strongly coupled 

q  50 neutrons 
q  [-L,L] Dirichlet 

DN

�L2
>> 1
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Loosely coupled 

q  1-D BBM with population control 
q  Uniform initial distribution 

q  50 neutrons 
q  [-L,L] Dirichlet 

DN

�L2
<< 1

Reflection due 
to N=constant ! 

Reflection due 
to N=constant ! 

q   Clustering  
q   Only one cluster after some time  
q   Reflected albeit leaking boundaries ! 
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Population control & traveling waves 

@

t

� = Dr2
�+ (� � �) �+

 
�� + � �D @

x

�(x, t)
��
x=±LR +L

�L

dx

R +L

�L

dx �(x, t)2

!
�(x, t)2

@t� = Dr2�+ (� � �) �(1� �)

q  Non-linear equation with         term 
q  Can be simplified under some assumptions 
 

q  F-KPP equation with traveling waves solutions 
q  Counter-reaction depending on the sign of  

�2

Fisher, Ann. Eugenics  
7:353-369 (1937) 

�(x, t) =

1

⇣
1 + C exp

± 1
6

p
6(���)x� 5

6 (���)t
⌘2

1� �

Dumonteil et al, Nuc. Eng. Tech., 
10.1016/j.net.2017.07.011 (2017)  
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Traveling wave & solitons 
 
q  Fux profile => comes from the averaging through 

time of the cluster displacement 
q  Connection between clustering & solitons 

Ø  Clustering typical of branching processes 
Ø  Solitons typical of non-linear equations 

q  Qualitative & Quantitative scheme to explain 
under-sampling biases on local tallies 

flux profile obtained by 
solving the F-KPP equation   

Cluster density profile from the 
BBM simulation 

OECD R1 benchmark 
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Is it possible to observe/characterize clustering 
effects through experiments? 

 

q  Clustering should be measurable, if certain conditions are gathered: 

Neutron 
migration area 
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q  Two important goals achieved: 

ü  established a protocol for subcritical neutron multiplication 

measurements at a research reactor [1] 

ü  did not drown very expensive state-of-the-art LANL multiplicity 

detectors aka MC-15 detectors (15 He-3 tubes encased in poly) 

In 2016, LANL/UMich Performed Subcritical Measurements at 
the RPI-RCF with LANL Neutron Multiplicity Detectors 
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Is it possible to observe/characterize clustering 
effects through experiments? 

 

q  Clustering should be measurable, if certain conditions are gathered: 

q  Ideal conditions for an experiment that could characterize clustering? 

ü  Zero power reactor                                            

ü  Fresh fuel, no burn-up effects 

ü  As big as possible  

ü  Find a way to do spatial measurements 

Neutron 
migration area 

MC15 detectors & He3 tubes 

RCF@RPI 
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 MORET 5 simulations  to design the experiment 

q MORET 5 code with all Random Noise options activated => dynamic + analog 

q  Data library: Endfb71 
q  Fission sampling:  

ü  Freya  
ü  discrete Zucker and Holden tabulated  
ü  Pn distributions and corresponding nubars 
ü  Only Spontaneous fissions 

 
q  Highly parallel simulations: 

q  Simulated signal = 1000 s (prompt+delayed) 
q  Number of independent simulations = 330  
q  Number of neutrons per simulation = 2.4 104 

 

  

Excellent reactivity: Rho = -4 pcm 
+ 

Up to 10 mW of simulated power!



38 

Preliminary results of RCF simulation  

q  Ideal scenario@RCF => 1st question: are there spatial correlations in the reactor ? 

   => 2nd question: if yes, are there measurable? 

Simulation of in-core effects  
with tallies defined over He3 tubes 

Simulation of expected signal  
in the MC15 detectors 
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 Simulation of RCF in-core effects  

Simulation of in-core effects  
with He3 tallies 

Simulation of expected signal 
 in the MC15 detectors 

GP (n,m) =
hnmi � hni hmi

hni hmi

���
P

Power 

G
 

Z position 

fl
ux

 

q  Experimental program should include: 

ü  Power scan 

ü  PuBe source effects 

q  RCF has the potential to be conclusive 

    regarding the neutron clustering theory! 
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Partial conclusions (see N. Thompson’s talk!) 

q  Stochastic modelling is used to characterize the behavior of loosely coupled 

systems and predicts a: 

q   clustering phenomenon… 

q  … obeying traveling waves equations 

q  Analog Monte Carlo simulations (with MCNP and/or MORET) were used to design 

such an experiment, using LANL MC15 detectors and the RCF@RPI reactor 

q  This experiment happened in August 2017 and showed that….                             

                               see Nick Thompson’s talk! 

q  Nick Thompson is currently working @ LANL and will rejoin IRSN in June to 

improve the analyses of the data 
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Thank you ! 
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Clustering theory 
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A little bit of field theory 

n1n2
.......... ni

�n

l

⌘iwith      the number of 
 neutrons in cell i 
 

and  � = D/2l2

q  fission event 
Ø  proba: 
Ø  action on    : 

q  capture event 
Ø  proba: 
Ø  action on    : 

q  migration event 
Ø  proba: 
Ø  action on    : 

�n

�n

�n a+i ai�1�n

Forward master equation 

+Wm(a+i�1ai�n, i� 1, i)P (a+i�1ai�n, t)�Wm(�n, i, i+ 1)P (�n, t)

+Wm(a+i+1ai�n, i+ 1, i)P (a+i+1ai�n, t)�Wm(�n, i, i� 1)P (�n, t)

dP (�n, t)

dt
=

X

i

W+(ai�n, i)P (ai�n, t) �W+(�n, i)P (�n, t)

+W�(a+i �n, i)P (a+i �n, t) �W�(�n, i)P (�n, t)

Wm(⇤n, i� 1 ! i)dt = ⇥p(1)�i⇤ndt

Wm(a+i�1ai~n, i� 1, i)P (a+i�1ai~n, t)

Wm(a+i+1ai~n, i+ 1, i)P (a+i+1ai~n, t)

Wm(~n, i, i+ 1)P (~n, t)

Wm(~n, i, i� 1)P (~n, t)

a+i �n = (..., ni�1, ni + 1, ni+1, ...)

ai�n = (..., ni�1, ni � 1, ni+1, ...)

W+(⇤n, i)dt = ⇥p(2)�i⇤ndtp(2)W+

W�(⇤n, i)dt = ⇥p(0)�i⇤ndtp(0)W�

Wm p(1)

ni�1

W+
W+

W� W�

(a+i�1ai�n, i� 1, i)

(a+i+1ai�n, i+ 1, i)

(�n, i, i+ 1)

(�n, i, i� 1)

Wm(i� 1 ! i)

�p(1)
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And a little bit more 

< nk >=
X

n

nkP (nk, t)

As before one can inject in the Master equation the mean number of 
neutrons in cell k: 

And define an appropriate tool to study spatial correlations:       
 

        the centered correlations without self-contribution 
  

c(x) = lim
l!0

nk

l

g(x, t) = (< c(y)c(y + x) >�c

2�c�(x))/c2

or its continuous version: 

.......... ..........
l ! 0

y
y + x

c(y + x)c(y)

x
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Equation for the 2-points correlation function 

Young, W.R., Roberts, A.J., Stuhne, G., Nature 412, 328 (2001) 
Houchmandzadeh, B., Phys. Rev. E 66, 052902 (2002) 
Houchmandzadeh, B., Phys. Rev. Lett. 101, 078103 (2008) 
Houchmandzadeh, B., Phys. Rev. E 80, 051920 (2009) 

d-dimensional Laplacian 
(diffusion term) 

auto-correlation term 
leading to 2nd moment 
effects (     is the mean 

number of pairs) 

with r = x − y

and

€ 

ν2

The equations obtained stand for any arbitrary dimension d and in the case 
                 can be written: 

Dumonteil, E. et al, Annals of Nuclear Energy 63, 612-618 (2014) 
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Analytical solution to this equation 

where  stands for the  

With initial condition the solution to the 1st equation is: 

(for all t) 

And the solution to the 2-points function is, taking dimension d = 3: 

incomplete Gamma function 

Amplitude ∝
λν2
Dc0 g can be interpreted as the probability 

to find a neutron next to another 
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Consequence 1: Convergence criteria 

Typical separation between particles: 

Number of particles to suppress clustering:            =>   

Let’s go back to the pincell test-case:                        and                       (# particles 
            simulated) 

'

'

'
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Consequence 2: Diagnostic tool 

2-points correlation function versus (r,t) for the 3-d analytical function 
        (i,n) for the TRIPOLI-4® simulation of 
                 the pincell (i is the bin number) 

⇒  very good agreement 
⇒  saturation of the 2-points estimator 
     in the MC simulation 

« MC criticality simulation » 
clustering diagnostic tool in TRIPOLI-4®: 
histogram of inter-collisions distances 

« theory » 
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Traveling waves 
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OECD/NEA R1 Benchmark 

q  Expert Group on Advanced Monte-Carlo Techniques @ OECD/NEA 
q  R1 Benchmark = ¼ PWR-type reactor core 
q  Designed to understand biases on local tallies estimates (+uncertainties) 

 

Reflective boundary  
Conditions (Neumann) 

Absorbing boundary  
Conditions (Dirichlet) 
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MORET Simulation of the R1 benchmark 

Fluxes (104 active cycles of 104 neutrons) Fluxes (106 active cycles of 102 neutrons) 
Fluxes (102 active cycles of 106 neutrons) 

Under-estimation inside the core, over-estimation for the outer assemblies 
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1-D binary branching Brownian motion 

Branching Brownian motion with population 
control couples:  
⇒  Galton-Watson birth-death process 
     to describe fission and absorption 
⇒  Brownian motion to simulate 
     neutron transport 
⇒  Population control that reproduces the end 
of cycle renormalization of MC criticality 
codes 

q  Uniform material, mono-energy, leakage bc 
q  Brownian motion with diffusion coefficient D [cm2.s-1] 
q  undergoes collision at Poissonian times with rate                   [s-1] 
q  at each collision, k descendants with probability 
q  total number of particles N kept constant 

< x

2(t) >= Dt

p(0) / �

p(1) / �

p(2) / �

� + � + �

t or g 

Population control algo. to keep N constant 

splitting 
roulette 
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q   Poisson statistics  
q   Cosine shape  

q  1-D BBM with population control 
q  Uniform initial distribution 

Strongly coupled 

q  50 neutrons 
q  [-L,L] Dirichlet 

DN

�L2
>> 1
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Loosely coupled 

q  1-D BBM with population control 
q  Uniform initial distribution 

q  50 neutrons 
q  [-L,L] Dirichlet 

DN

�L2
<< 1

Reflection due 
to N=constant ! 

Reflection due 
to N=constant ! 

q   Clustering  
q   Only one cluster after some time  
q   Reflected albeit leaking boundaries ! 
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How do these processes average through time ? 

From strongest to lousiest coupled systems 

q  Reproduces the R1 benchmark 
q  Grasp the features of the under-sampling bias 

Ø  Leakage boundaries 
Ø  Amplitude depends on N & the system size 
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Diffusion equation with population control 

@t� = Dr2�+ (� � �) �

q  Monte-Carlo criticality codes = Boltzmann equation + population control 
q  Population control = Weight Watching techniques (i.e. splitting+roulette) 
                                    played at end of cycles to ensure that N~cte 

Can we build an equation for what MC criticality codes actually solve ?  

Fission rate 

Capture rate 
Diffusion operator 

(same demonstration for transport) 

+ ? 
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Fission/Capture vs Splitting/Russian Roulette 

f(N)N
�(t)N

�N
�N�⇤N

�⇤N

renormalization rate 
depends on N and t/g  

N

2N

N

2

N

Beginning 
of cycle 

End of 
cycle 

N

End of 
renormalization 

t or g 

Probability for a given neutron 
to be splitted/captured depends 

on the overall # of neutrons 
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Pair interactions 

But how many neutrons do we  
remove/split at the end of each cycle 

and how to select them ? 

q  Combinatorial interactions ! 
     ~ N2 at first order (# pairs) 
q  Depends on the total mass N 
q  Depends on the local mass N(x) 

renormalization rate depends on 
time and N !  

�(t)f(N)N

(N � 1)N⇡

N2

Generalization  # neutrons captured  
                           in                if k>1 

number of pairs 

x± dx

Birch et al, Theoretical Population Biology,  
70, 26–42 (2006) 

�(t)

Z
dy G(x, y, t)
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Diffusion with pair interactions 

@t� = Dr2�+ (� � �) �

@t� = Dr2
�+ (� � �) �+ �

Z
dy G(x, y, t)

number of pairs 

rate of renormalization 

G(x, y, t) =
h
1 + g(x, y, t)

i
�(x)�(y)

g(x, y, t) spatial correlation function 

+ pair interactions  

q  “Hierarchy horror” (2d order moment pops back in the mean field equation!) 
q  Clustering = spatial correlations => Bias induced on the flux wrt pure diffusion 

�(t)

Z
dy G(x, y, t)
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Small population size 

@

t

� = Dr2
�+ (� � �) �+

 
�� + � �D @

x

�(x, t)
��
x=±LR +L

�L

dx

R +L

�L

dx �(x, t)2

!
�(x, t)2

@t� = Dr2�+ (� � �) �(1� �)

q  Non-linear equation with         term 
q  Can be simplified under some assumptions 
 

q  F-KPP equation with traveling waves solutions 
q  Counter-reaction depending on the sign of  

�2

Fisher, Ann. Eugenics  
7:353-369 (1937) 

�(x, t) =

1

⇣
1 + C exp

± 1
6

p
6(���)x� 5

6 (���)t
⌘2

1� �

Dumonteil et al, Nuc. Eng. Tech., 
10.1016/j.net.2017.07.011 (2017)  
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Traveling wave & solitons 
 
q  Fux profile => comes from the averaging through 

time of the cluster displacement 
q  Connection between clustering & solitons 

Ø  Clustering typical of branching processes 
Ø  Solitons typical of non-linear equations 

q  Qualitative & Quantitative scheme to explain 
under-sampling biases on local tallies 

flux profile obtained by 
solving the F-KPP equation   

Cluster density profile from the 
BBM simulation 
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Back to the under-sampling bias 
 
q  Under-sampling bias due to combination 

between clustering + population control + bc 
q  Parameters controlling the amplitude of the 

under-sampling bias are linked to the spatial 
correlation function: 

q  N 
q  Total reaction rate 
q  Typical size of the system 
q  Diffusion coefficient 
q  Second moment of the  
         descending factorial of p(z) 

Test for N dependence 
            OK 

De Mulatier et al, J. Stat.  Mech.,  
15, P08021, 1742–5468 (2015) 
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Population control  

�(t) =
�� + � �D

R L
�L dx r2

�(x, t)
R L
�L dx

R L
�L dy G(x, y, t)

Z L

�L
dx �(x, t) = 1

Newman et al, Phys. Rev. Lett., 92, 228103 (2004) 

q  N has to be kept constant :  

q       depends on time! 

q  Injecting the normalization relation in our equation, we can 
calculate  

�

�(t)
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What equation do MC codes solve ? 

�(t) =
�� + � �D

R L
�L dx r2

�(x, t)
R L
�L dx

R L
�L dy G(x, y, t)

@t� = Dr2
�+ (� � �) �+ �(t)

Z L

�L
dy (1 + g(x, y, t))�(y, t)�(x, t)

Large population size 

Small population size 

g(x, y, t) ! 0

g(x, y, t) ! g

1
N (x, y) >> 1

De Mulatier et al, J. Stat.  Mech.,  
15, P08021, 1742–5468 (2015) 

Probability that one neutron 
in x is captured 

Flux factorized 
out of the integral 
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Large population size 

r2
��

 Z L

�L
dx r2

�(x)

!
� = 0

r2�+
⇡2

2L2
� = 0

@

x

�(x)
��
x=±L

r2� = 0
Neumann/Reflective bc 

Dirichlet/Absorbing bc 
No criticality conditions ;) 
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Experimental design 



67 

In more details 

Ø  Size of the reactor (the bigger, the better) => control rod insertion matters 

Ø  Power of the reactor (the lower, the better) => ideally different run at different 

power. Ability to differentiate the power “signal” (fission chains) and the following 

“noise” sources: 

Ø  (alpha,n) reactions  have to be simulated 

Ø  Spontaneous fission level has to be simulated 

Ø  Inhibition of triggering sources as much as possible (PuBe) 

Ø  Define the time gate width (analysis) to reveal the non-Poissonian effects 

Ø  Spatial extension of the measurement => detector with a spatial resolution over 

more than few 10 cm, or at least being able to move the detector 
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 MORET Simulations  to design the experiment 

q MORET5 code with all Random Noise options activated: 

q  Data library: Endfb71 
q  Fission sampling:  

ü  Freya  
ü  discrete Zucker and Holden tabulated  
ü  Pn distributions and corresponding nubars 
ü  Only Spontaneous fissions 

 
q  Highly parallel simulations: 

q  Simulated signal = 1000 s (prompt+delayed) 
q  Number of independent simulations = 330  
q  Number of neutrons per simulation = 2.4 104 

 

  

Excellent reactivity: Rho = -4 pcm 
+ 

Up to 10 mW of simulated power!
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RPI Measurements 2017: 
Neutron clustering 
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Featuring 

IRSN : Eric Dumonteil, Wilfried Monange 
LANL: Rian Bahran, Jesson Hutchinson,  
          Geordy McKenzie, Mark Nelson 
RPI: Peter Caracappa, Nick Thompson, 
       Glenn Winters  
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Surprise #1 
Hotel View And Rendering 
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Surprise #2 
De Gaulle 
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IRSN 
  LANL  
     & RPI 
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Good moments 
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Beautiful RCF outside views 
Rian’s 

mine 
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